
 

 

 

 

 

 

 

Calvin University 

Department of Computer Science 

Final Senior Design Report 

Nathan Herder 

05/17/2020 

Advisor: Joel Adams 

 

 

 

 

 

 

 

 



 

Project vision and overview: 

The goal of my senior design project has been to create a library that joins 

together the functionality of two other c++ libraries that have been created by Calvin 

Students over the years. Those two libraries being TSGL (Thread Safe Graphics 

Library) and TSAL (Thread Safe Audio Library). The purpose of this wasn’t only to make 

a higher level general purpose library that combines the functionality of both libraries, 

but also to create and explore some pedagogical tools to potentially help computer 

science students to understand various sorting algorithms through visualizations and 

audializations.  My Audio Visual library serves to give others the ability to create 

programs that utilize both the visual elements of TSGL combined with audio from TSAL. 

The other main goal that the library fulfills is allowing audialization, visualizations, or a 

combination of the two to be played. 

Audializations refer to sound representations of sorting algorithms using different 

frequencies to convey the patterns that appear audibly in sorting algorithms when 

sorting numbers. I wanted to try and discover what patterns appear and whether or not 

different algorithms can be distinguished by ear rather than only visibly. This gave me 

some leeway to experiment with how these audializations are represented. 

This library can hopefully be used as a building block for future development for 

summer research or future design projects. I also hope that it can be used as a teaching 

tool to engage students and learn about sorting algorithms, and potentially be extended 



in the future to combine the new versions and features of TSGL and TSAL to be used 

together. 

 

 
Background, including research review: 

Beginning the fall semester I had no prior knowledge of TSAL and some slight 

exposure to TSGL in previous classes, mainly CS 112. This required that I familiarize 

myself more with both libraries, understand their APIs, dependencies, and how they 

work so that I could begin to think about design decisions when it came time to combine 

them into my Audio Visual library. 

The first bit of research required that I better understand how to build and obtain 

packages of these libraries to be able to use on my system, which is running Ubuntu 

18.04 LTS. Chris Wieringa had packaged Ian Adams most recent summer work on 

TSGL for the Calvin lab machines, which run the same version of Ubuntu, and was able 

to provide some help and guidance on how to build a debian package of TSGL that I 

was able to use. TSAL uses a the GNU Autotools build system that I was not familiar 

with which required a little bit of research to get more comfortable with. Autotools, 

Autoconf, and Automake seemed daunting at first because of the amount of files that 

are automatically generated for you, but a little research and building TSAL’s 

instructions made building TSAL rather trivial. 

TSGL had some very good examples and documentation to get me familiar with 

the API and examples on how to use a canvas, start, and stop drawing animations. Ian 



implemented two sorting algorithms this past summer, a parallel merge sort and a 

shaker sort to demonstrate TSGL’s capabilities, that served as a very good starting 

point for combining TSAL’s functionality later on. 

TSAL took some getting used to, to fully understand the purpose of a mixer and 

synthesizer objects. I do not have much musical background, fortunately examining 

TSAL’s examples and having Mark, the creator of TSAL, at my disposal was needed to 

be able to thoughtfully work on combining the two libraries. 

 

System design and Implementation: 

TSAL was created and designed by Joel Adams and Mark Wissink to be a 

companion library to TSGL. These similar design choices made in advance such as 

both libraries being designed to be thread safe, header only, and cross platform 

compatible helped in guiding many of my decisions. The goal for my audial visual library 

was to also be a C++ header only library by including both of the TSGL and TSAL 

headers in the base class. Header only libraries have some drawbacks and benefits 

depending on the scenario. In the case of Calvin’s libraries they are easy to integrate 

and simplify the build process for users so that they don’t have to specify the library to 

the linker. All the code is pulled in by the preprocessor when the library is included. 

They still required that dependencies be downloaded manually by the user, unless a 

configuration script is made, but c++ does not have a native package manager anyways 

so that would be a problem to deal with even if it was a static or shared library. On the 



other hand being header only makes for larger object files and can increase compilation 

time as a project grows if your library begins being included multiple times it can 

unnecessarily be compiled multiple times. In the case of this library that’s not really an 

issue since anyone that uses it should only be including it once. 

When beginning to design the Audio Visual library professor Adams and I wanted 

to make sure to allow for any programs to be able to make use of the TSGL canvas and 

TSAL synthesizers. We also wanted to create a class specifically for sorting algorithms 

to inherit functionality and characteristics specific to them. These decisions led to the 

layout of the class structure that was implemented. The base class, AudialVisualization, 

handles all command line parameters, provides data and functions that anyone would 

need to be able to use the functionality of both classes such as: a TSGL Canvas 

pointer, TSAL Mixer pointer, methods to create a canvas or mixer, getters and setters 

for Canvas parameters, and additional information. 

The handling of command line parameters is handled through the use of cxxopts, 

a lightweight header only command line parsing library. Cxxopts provides a very nice 

framework to create positional, named, or flag style command line arguments. It also 

provides a default help option to display all possible arguments with a description for 

users. There are seven parameters I have made available which can be used to specify 

whether or not you want a canvas, a mixer for playing sound, canvas height, canvas 

width, the number of data elements to be sorted, the number of threads to be used, and 

flags to specify which sorting algorithm to run. 



The SortingAudialVisualization class inherits from AudialVisualization and is 

designed to be inherited from in order to implement sorting algorithms or to play the 

existing sorting algorithms which have been implemented. The inheritance and 

polymorphism allowed similar features of all sorting algorithms to be encapsulated in 

attempts to reduce unnecessarily repeating code. For example, the 

SortingAudialVisualization class overrides the method to create a canvas so that it can 

ensure the canvas height is always half of the width. There are also some common 

getter and setter methods used to compute the width of the data element rectangles 

onto the canvas if you prefer to sort less data elements than the width of the canvas. 

Each implementation of the sorting algorithms inherit form 

SortingAudialVisualization and are encapsulated into their own respective class 

containing the algorithm and data specific to them. They have a simple run function to 

determine whether or not a canvas and mixer need to be created based on the 

command line arguments passed and a function that sorts the data and plays the 

audialization and visualizations. 

One area of the design that had to be altered during the project was the 

implementation of the sorting algorithm classes. I first created three methods in each 

sorting algorithm class that accepted a pass by reference canvas and mixer: one that is 

passed only a canvas object, another that is passed only a mixer object, and a third that 

is passed both. After examination it became clear that this required a lot of repeated 

code and could be implemented using pointers that could be passed as null if an object 



doesn’t exist. This required only implement one method as opposed to three. This 

helped to simplify the classes but then required that the pointers be checked carefully 

when running the algorithms to avoid any null pointer references. This was a valuable 

adaptation to the implementation that was changed as I encountered the problem. 

An additional design implementation that I changed was the object required to be 

created by the user. When first designed I was creating the objects for the sorting that I 

wanted to run in my programs main function and calling their run function. This was a 

poor design decision because it required recompiling every time the user wanted to run 

a different sorting algorithm. To fix this poor decision I refactored the code so that to run 

any of the sorting algorithms the user must only instantiate a SortingAudialVisualization 

object. Then each sorting algorithm object is created and played based on the -s flags 

and their arguments given at runtime. 

Some additional tweaking and experimentation was required when running the 

audializations with TSAL. I began by starting with the method used in TSAL’s examples 

to compute the MIDI notes to play in the audializations. This method started at a C3 

MIDI note and added a constant multiplied by the current data value being sorted 

divided by the max data element. This method of computing the MIDI note to play didn’t 

seem to make the most sense and was inconsistent when running different sorting 

algorithms. Some of the sorting algorithms would begin mapping sounds into a very low 

or high range that was difficult to hear. I worked with Mark to create a new helper 

method in TSAL that can be given a range of MIDI notes, a range from zero to the 



height of the canvas, and the current data value. These parameters are then used to 

map the current data value to an appropriate note in the range of notes specified so that 

the audializations are more consistent no matter the number of items that are being 

sorted and stay in a more pleasant range for listening to. 

The decision to be able to change the number of data elements being sorted was 

made in order to be able to speed up the demos for my final presentation and for others 

that may use my library in the future. The sorting algorithms originally showed the data 

being sorted by using TSGL’s drawLine() function representing each data element being 

sorted as only one pixel wide. Each sort only sorts as many numbers as the canvas is 

wide. For slower algorithms such as bubble, insertion, and selection it would take a very 

long time to complete. You could use the -w flag to run the algorithms with a smaller 

canvas width which would reduce the number of items being sorted to speed up the 

visualization, but then the canvas would be very small and not optimal for viewing. This 

dilemma is why I chose to add the -d flag to be able to have a larger canvas to see and 

allow for sorting fewer items so that it doesn’t take too much time to watch the algorithm 

complete. Rather than using the tsgl::drawLine() method it now uses 

tsgl::drawRectangle() method to draw the data with a larger than one pixel width. 

 

Results and discussion: 

The final result of my project is a functioning library that combines the features of 

TSGL completed at the end of Ian’s summer research and TSAL’s synthesizers and 



thread synthesizers. There are currently five implemented sorting algorithms including 

bubble, insertion, selection, shaker, and parallel merge sorts. There is also a linear 

merge sort that demonstrates the library's ability to support non sorting algorithm use 

cases. 

Before college classes were moved online Mark Wissink, professor Adams, and I 

were able to conduct an experiment to try and see whether or not learning sorting 

algorithms via audializations had any apparent effect on the learning outcomes of 

students. We had a total of thirty-seven CS 112 students who participated and who we 

split into control and treatment groups. CS 112 students were chosen as test subjects 

because they have not yet formally covered sorting algorithms in CS 212 but have still 

been exposed to Big O notation and time complexity in 112. The control group remained 

in the gold lab and the treatment group was placed into the maroon lab. 

The experiment lasted for fifty minutes and began by having both the control and 

treatment group take the same Google Forms pre-quiz dealing with bubble, insertion, 

quick, and merge sorting algorithms. The pre-quiz asked various questions about the 

runtime, Big O time complexity, and to identify sorting algorithms from pseudocode. The 

control group spent ten minutes reading online articles about each sorting algorithm, its 

time complexity and how it is implemented. The treatment group read the same articles 

as the control group for five minutes and then interacted with each sorting algorithm 

audibly in TSAL. Finally, both groups ended the experiment by taking a post-quiz of a 



very similar structure to the pre-quiz. The goal of the experiment being to see whether 

or not interacting with sorting algorithms audibly has any effect on learning outcome. 

A grading scale of one point for each question was used. Any additional selected 

check marks for any of the questions beyond that of the answer resulted in the 

subtraction of a point. The null hypothesis formed was that there is no significant 

learning outcome difference between the control and treatment groups. The alternative 

hypothesis being that there is a significant learning outcome difference between the 

control and treatment groups. The degrees of freedom was one less than the number of 

participants, so 36. The average post score from the control group was 11.88 with a 

variance of 8.57, while the average post score from the experiment group was 11.33 

with a variance of 9.743. This resulted in a t-statistic of 0.18 and a t-critical of 2.03 for a 

two-tailed test. The t-statistic is less than the cutoff t-critical value and we received a 

p-value of 0.858, leading me to fail to reject the null hypothesis and state that there was 

no real significant difference in learning ourcomes between the two groups. 

We identified some parts of the experiment that could have gone more smoothly. 

Some of the CS 112 students were not as familiar with the command line and our 

instructions could have been more clear causing less time to be spent interacting with 

the audializations. There were also some unnecessary ALSA audio driver messages 

produced by TSAL that raised questions by those in the treatment group. Those TSAL 

message should be silenced in any future runs of the experiment. There was also some 

confusion about which audio jack to use on the lab computers, some machines required 



using the green audio output on the back of the machine rather than headphone jack on 

the top. Finally, the aforementioned issues caused slight delays in sticking to the 

experiment schedule and getting the treatment group participants up and running with 

the experiment and remaining in sync with one another. 

Overall it was a good first experiment that I think would be interesting to run on 

future CS 112 students with some of the kinks worked out. It would also potentially be 

neat to  try with visually impaired people who can’t see a traditional sort. The 

experiment group expressed that the audializations were a more engaging means of 

learning over the control group. I personally can tell apart the various sorting algorithms 

based on sound alone. There are very distinct audible patterns that arise with each 

algorithm. 

 

Conclusions: 

This was a fun and challenging project to project to work on. It was neat to see 

the progress and work of past and current Calvin students combined together for the 

first time into the audial visualization library that I designed and created. I would say that 

this was a successful project that was able to meet a majority of the intended goals 

along the way. There is now an object oriented header only command line library that 

combines the functionality of both TSGL and TSAL. There are also a handful of sorting 

algorithms allowing visualizations and audializations to play. There is no shortage of 

future work for Calvin students to step in, learn, experiment, and make improvements 



along the way. I’m looking forward to seeing future growth and development in this 

library in the future 

 

Future work: 

In the future there are many areas for the improvement of the library. One feature 

that I would like to see added is the ability to run multiple sorting algorithms 

simultaneously using multiple canvases and mixers. Near the end of the semester I 

began working on this but did not quite complete it. I was anticipating being able to pass 

multiple -s to the command line to create multiple omp threads for each sorting 

algorithm being run. If the user wants to run multiple sorts at once and one is a parallel 

sorting algorithm, the thread created for that algorithm can then split to create the 

number specified via the -t command line argument. This added functionality would 

make a better learning tool to teach sorting algorithms and show visualizations. 

In hindsight another thing that could be changed, is to have one function in the 

SortingAudialVisualization class that can generate the array of numbers that need to be 

sorted and passed to the sorting algorithms as an argument. This would further reduce 

repeated code in each of the sorting algorithm classes and place it into a single location 

available to all. 

I would be great if there could be more analysis on the learning outcomes that 

audializations provide to students. I would like to see another experiment conducted on 



CS 112 students with more of the experiment issues that we found worked out 

beforehand. I would also like to see and experiment designed with visually impaired 

people to see how they find this method of learning algorithms and their ability to 

distinguish them. 

A final additional thing that would help make this library more usable on all platforms 

would be to create a consistent build environment across TSGL, TSAL and my library. 

GNU Autotools or CMake may be a good solution to download the required library 

dependencies for you depending on the users platform. It would also be nice to set up a 

continuous integration pipeline so that each library is built for each platform when a 

push into master is made. As the libraries grow and increasingly depend on one 

another, this would make the experience more enjoyable for more users on more 

platforms. I would like to see Ian’s new 3D additions to TSGL able to be used in my 

library. 

 

Acknowledgments: 

Throughout the course of this senior design project and my time at Calvin I have 

received a lot of help, advice, and knowledge from my professors, peers, family, and 

others. I appreciate and am thankful for all the support that I have received. First, I want 

to thank Professor Adams for being my advisor throughout this project. I’ve enjoyed 

working with you and am thankful for the guidance that you have provided. I also 

wanted to thank Chris Wieringa for his help early on in my project as well as Ian Adams 



and Mark Wissink for being willing to help answer questions and resolve problems 

related to TSGL and TSGL along the way. Finally, thank you to the Calvin computer 

science department and all the professors who have helped to shape me and my 

education throughout my time at Calvin. 

 

 

 

 

 

 

 

 

 

 

 



References: 

TSGL: https://github.com/Calvin-CS/TSGL 

TSAL: https://github.com/Calvin-CS/TSGL 

CXXOPTS: https://github.com/jarro2783/cxxopts 

 

 

 

 

 

 

 

 

 

 

https://github.com/Calvin-CS/TSGL
https://github.com/Calvin-CS/TSGL
https://github.com/jarro2783/cxxopts


Appendixes: 

/** 
 * AudialVisualization.h declares a class that can be inherited from 
 * to wrap TSGL and TSAL programs. 
 * 
 * Who: Nate Herder 
 * When: 11/06/2019 
 * Where: Calvin University 
 * 
 */ 
#pragma once 
 
#include <tsgl.h> 
#include <tsal.hpp> 
#include <cxxopts.hpp> 
#include <omp.h> 
#include <iostream> 
#include <memory> 
#include <string> 
 
using namespace tsgl; 
using namespace tsal; 
 
namespace avlib { 
 
class AudialVisualization { 
protected: 
  int num_threads; 
  bool show_visualizaiton; 
  bool play_audialization; 
  int canvas_height; 
  int canvas_width; 
  int num_algorithms_to_run; 
  std::vector<std::string> sorting_algorithms; 
  Mixer *mixer = nullptr; 
  Canvas *canvas = nullptr; 
  std::vector<ThreadSynth> voices; 
  int data_amount; 
 
public: 
  AudialVisualization(int argc, char **argv); 
  virtual Canvas *createCanvas(std::string canvas_name); 
  virtual Mixer *createMixer(); 
  void setVisualization(const bool b); 
  void setAudialization(const bool b); 



  void setNumThreads(const int n); 
  void setCanvasHeight(const int h); 
  void setCanvasWidth(const int w); 
  void setSortingAlgorithm(const std::vector<std::string>& a); 
  void setDataAmount(const int a); 
  bool showVisualization() const; 
  bool playAudialization() const; 
  int getCanvasHeight() const; 
  int getCanvasWidth() const; 
  int getDataAmount() const; 
  int getNumThreads() const; 
  std::vector<std::string> getSortingAlgorithms() const; 
  ~AudialVisualization(); 
}; 
 
} 
 
 
/** 
 * AudialVisualization.cpp defines the functionality that is common 
 * to wanting running TSAL and TSGL applictions together. 
 * 
 * Who: Nate Herder 
 * When: 11/06/2019 
 * Where: Calvin University 
 * 
 */ 
 
#include "AudialVisualization.h" 
 
namespace avlib { 
 
cxxopts::ParseResult parse(int argc, char** argv) { 
  try { 

cxxopts::Options options("AudialVisualization", "- command line options"); 
 

options.positional_help("[optional args]").show_positional_help(); 
 

options.allow_unrecognised_options().add_options()("help", "Print help")( 
 "a, audial", "play audialization using TSAL", 
cxxopts::value<bool>()->default_value("false"))( 
 "v, visual", "show visualization using TSGL", 
cxxopts::value<bool>()->default_value("false"))( 
 "h, canvas-height", "TSGL canvas height", 
cxxopts::value<int>()->default_value("1024"))( 
 "w, canvas-width", "TSGL canvas width", 
cxxopts::value<int>()->default_value("1024"))( 



 "d, data-amount" , "Number of data elements to sort. Only used when inheriting 
from SortingAudialViaulization. data-amount must be less than canvas-width.", 
cxxopts::value<int>()->default_value("1024"))( 
 "t, threads", "number of threads to use", 
cxxopts::value<int>()->default_value("1"))( 
 "s, sorting-algorithm", "decide which sorting algorithm to run", 
cxxopts::value<std::vector<std::string>>()); 
 

auto results = options.parse(argc, argv); 
 

if (results.count("help")) { 
 std::cout << options.help({"", "Group"}) << std::endl; 
 exit(0); 

} 
 

return results; 
 
  } catch (const cxxopts::OptionSpecException& e) { 

std::cout << "error parsing options: " << e.what() << std::endl; 
exit(1); 

  } 
} 
 
AudialVisualization::AudialVisualization(int argc, char** argv) { 
  auto result = parse(argc, argv); 
 
  if (result["canvas-height"].as<int>() > 0) { 

setCanvasHeight(result["canvas-height"].as<int>()); 
  } 
  if (result["canvas-width"].as<int>() > 0) { 

if (result["canvas-width"].as<int>() < 100) { 
 setCanvasWidth(100); 

} 
setCanvasWidth(result["canvas-width"].as<int>()); 

  } 
  if (result["data-amount"].as<int>() > getCanvasWidth()) { 

std::cout << "data-amount can't be larger than canvas-width" << std::endl; 
std::exit(1); 

  } else { 
 setDataAmount(result["data-amount"].as<int>()); 
  } 
 
  if( result.count("sorting-algorithm") > 0 ) { 

setSortingAlgorithm(result["sorting-algorithm"].as<std::vector<std::string>>()); 
  } 
 
  if (result["threads"].as<int>() > omp_get_num_procs()) { 

setNumThreads(omp_get_num_procs()); 



  } else { 
setNumThreads(result["threads"].as<int>()); 

  } 
 
  setAudialization(result["audial"].as<bool>()); 
  setVisualization(result["visual"].as<bool>()); 
  
} 
 
Canvas* AudialVisualization::createCanvas(std::string canvas_name) { 
  if (showVisualization()) { 

canvas = new Canvas(0, 0, getCanvasWidth(), getCanvasHeight(), canvas_name); 
  } 
  return canvas; 
} 
 
Mixer* AudialVisualization::createMixer() { 
  if (playAudialization()) { 

mixer = new Mixer(); 
  } 
  return mixer; 
} 
 
void AudialVisualization::setVisualization(const bool b) { 
  show_visualizaiton = b; 
} 
 
void AudialVisualization::setAudialization(const bool b) { 
  play_audialization = b; 
} 
 
void AudialVisualization::setNumThreads(const int n) { 
  num_threads = n; 
} 
 
void AudialVisualization::setCanvasHeight(const int h) { 
  canvas_height = h; 
} 
 
void AudialVisualization::setCanvasWidth(const int w) { 
  canvas_width = w; 
} 
 
void AudialVisualization::setSortingAlgorithm(const std::vector<std::string>& a) { 
  sorting_algorithms = a; 
} 
 
void AudialVisualization::setDataAmount(const int a) { 



  data_amount = a; 
} 
 
bool AudialVisualization::showVisualization() const { 
  return show_visualizaiton; 
} 
 
bool AudialVisualization::playAudialization() const { 
  return play_audialization; 
} 
 
int AudialVisualization::getNumThreads() const { 
  return num_threads; 
} 
 
int AudialVisualization::getCanvasHeight() const { 
  return canvas_height; 
} 
 
int AudialVisualization::getCanvasWidth() const { 
  return canvas_width; 
} 
 
int AudialVisualization::getDataAmount() const { 
  return data_amount; 
} 
 
std::vector<std::string> AudialVisualization::getSortingAlgorithms() const { 
  return sorting_algorithms; 
} 
 
AudialVisualization::~AudialVisualization() { 
  delete canvas; 
  delete mixer; 
} 
 
 
} 
 
 
/** 
 * SortingAudialVisualization.h declares the class that all audial 
 * visualizations will inherit from containing all methods, command line 
 * preferences, and other data that is common across all sorting algorithms. 
 * 
 * Who: Nate Herder 
 * When: 11/06/2019 
 * Where: Calvin University 



 * 
 */ 
 
#pragma once 
 
#include <string> 
#include "AudialVisualization.h" 
#include "tsgl.h" 
 
using namespace tsgl; 
using namespace tsal; 
 
namespace avlib { 
 
class SortingAudialVisualization : public AudialVisualization { 
private: 
  bool even_data_chunks; 
  bool main_thread; 
  int block_size; 
  int number_normal_block_size; 
 
public: 
  SortingAudialVisualization(int argc, char** argv, bool value = true); 
  Canvas* createCanvas(std::string canvas_name); 
  Mixer* createMixer(); 
  void setEvenDataChunks(const int v); 
  bool getEvenDataChunks() const; 
  void setBlockSize(const int bs); 
  int getBlockSize() const; 
  void setNumberNormalBlockSize(const int n); 
  int getNumberNormalBlockSize() const; 
  bool getMainThread(); 
  ~SortingAudialVisualization(); 
}; 
 
} 
 
 
/** 
 * SortingAudialVisualizations.cpp holds defines the common methods and data 
 * across all sorting algorithms. 
 * 
 * Who: Nate Herder 
 * When: 11/06/2019 
 * Where: Calvin University 
 * 
 */ 
 



#include "SortingAudialVisualization.h" 
#include "BubbleSorter.h" 
#include "InsertionSorter.h" 
#include "MergeSorter.h" 
#include "SelectionSorter.h" 
#include "ShakerSorter.h" 
#include <cmath> 
 
namespace avlib { 
 
SortingAudialVisualization::SortingAudialVisualization(int argc, char** argv, bool value) : 
AudialVisualization(argc, argv), main_thread{value} { 
  if( (getCanvasWidth() % getDataAmount()) == 0 ) { 

setEvenDataChunks(true); 
setBlockSize( (getCanvasWidth()/getDataAmount()) ); 
setNumberNormalBlockSize( getDataAmount() ); 

  } else { 
setEvenDataChunks(false); 
setBlockSize( floor( (getCanvasWidth()/getDataAmount()) ) ); 
setNumberNormalBlockSize( (getDataAmount() - (getCanvasWidth() % 

getDataAmount())) ); 
  } 
 
  std::vector<std::string> sort_run_vector = getSortingAlgorithms(); 
 
  if( getMainThread() == true ) { 

#pragma omp parallel num_threads( sort_run_vector.size() ) 
{ 

 int tid = omp_get_thread_num(); 
   
 if(sort_run_vector.at(tid) == "bubble") { 
 BubbleSorter b(argc, argv); 
 b.run(); 
 } else if(sort_run_vector.at(tid) == "insertion") { 
 InsertionSorter i(argc, argv); 
 i.run(); 
 } else if(sort_run_vector.at(tid) == "merge") { 
 MergeSorter m(argc, argv); 
 m.run(); 
 } else if(sort_run_vector.at(tid) == "selection") { 
 SelectionSorter s(argc, argv); 
 s.run(); 
 } else if(sort_run_vector.at(tid) == "shaker") { 
 ShakerSorter sh(argc, argv); 
 sh.run(); 
 } 

} 
  } 



 
 
} 
 
Canvas* SortingAudialVisualization::createCanvas(std::string canvas_name) { 
  setCanvasWidth(getCanvasWidth() ); 
  setCanvasHeight((getCanvasWidth() / 2)); 
  canvas = new Canvas(0, 0, getCanvasWidth(), (getCanvasWidth() / 2), canvas_name); 
  return canvas; 
} 
 
Mixer* SortingAudialVisualization::createMixer() { 
  mixer = new Mixer(); 
  return mixer; 
} 
 
void SortingAudialVisualization::setEvenDataChunks(const int v) { 
  even_data_chunks = v; 
} 
 
bool SortingAudialVisualization::getEvenDataChunks() const { 
  return even_data_chunks; 
} 
 
void SortingAudialVisualization::setBlockSize(const int bs) { 
  block_size = bs; 
} 
 
int SortingAudialVisualization::getBlockSize() const { 
  return block_size; 
} 
 
void SortingAudialVisualization::setNumberNormalBlockSize(const int n) { 
  number_normal_block_size = n; 
} 
 
int SortingAudialVisualization::getNumberNormalBlockSize() const { 
  return number_normal_block_size; 
} 
 
bool SortingAudialVisualization::getMainThread() { 
  return main_thread; 
} 
 
 
SortingAudialVisualization::~SortingAudialVisualization() { 
  delete canvas; 
  delete mixer; 



} 
 
} 
 
 
/** 
 * BubbleSorter.h declares declares, overrides, and implements the algorithm 
 * necessary to implement a bubble sort audialization and visualization. It 
 * inherits from SortingAudialVisualizations.h 
 * 
 * Who: Nate Herder 
 * When: 02/27/2020 
 * Where: Calvin University 
 * 
 */ 
 
#pragma once 
 
#include "SortingAudialVisualization.h" 
 
namespace avlib { 
 
class BubbleSorter : public SortingAudialVisualization { 
 public: 
  BubbleSorter(int argc, char **argv, bool value = false); 
  void run(); 
  void BubbleSort(Canvas *can, std::vector<ThreadSynth> &voices, int data_elements); 
}; 
 
} 
 
 
/** 
 * BubbleSorter.cpp defines the methods and algorithm required to make the 
 * audial/visualizaiton for bubble sort 
 * 
 * Who: Nate Herder 
 * When: 02/27/2020 
 * Where: Calvin University 
 * 
 */ 
 
#include "BubbleSorter.h" 
 
namespace avlib { 
 
BubbleSorter::BubbleSorter(int argc, char **argv, bool value) : 
SortingAudialVisualization(argc, argv, value) { 



 
} 
 
 
void BubbleSorter::BubbleSort(Canvas *can, std::vector<ThreadSynth> &voices, int 
data_elements) { 
  int cwh = getCanvasHeight();  // canvas window height 
  ColorFloat color = RED; 
  ColorFloat bg = BLACK; 
  ColorFloat sort_done_color = WHITE; 
 
  int block_size = getBlockSize(); 
  int number_normal_block_size = getNumberNormalBlockSize(); 
  int block_size_plus_one = block_size + 1; 
  if (showVisualization()) { 

can->start(); 
  } 
 
  // generate the data to sort 
  int *numbers = new int[data_elements];  // Array to store the data 
  for (int i = 0; i < data_elements; i++) { 

numbers[i] = rand() % getCanvasHeight(); 
  } 
 
  // draw the original random data 
  if (showVisualization()) { 

for (int i = 0; i < data_elements; i++) { 
 if( i < number_normal_block_size ) { 
 can->drawRectangle((i*block_size), (cwh-numbers[i]), block_size, numbers[i], 
color); 
 } else { 
 
can->drawRectangle(((number_normal_block_size*block_size)+(((i-number_normal_bloc
k_size)*block_size_plus_one)) ), (cwh-numbers[i]), block_size_plus_one, numbers[i], 
color); 
 } 

} 
  } 
 
  int temp; 
  // begin sorting 
  for (int i = 0; i < data_elements; i++) { 

for (int j = 1; j < data_elements - i; j++) { 
 if (numbers[j] < numbers[j-1]) { 
 temp = numbers[j]; 
 numbers[j] = numbers[j-1]; 
 numbers[j-1] = temp; 
 



 if (playAudialization()) { 
 MidiNote note = Util::scaleToNote(numbers[j], std::make_pair(0, 
getCanvasHeight()), std::make_pair(C3, C7)); 
 voices.at(0).play(note, Timing::MICROSECOND, 50); 
 } 
 
 if (showVisualization()) { 
 can->sleep();  // recommended to sleep before drawing 
 if(j <= number_normal_block_size) { 
 can->drawRectangle((j*block_size), 0, block_size, cwh, bg); 
 can->drawRectangle((j*block_size), (cwh-numbers[j]), block_size, numbers[j], 
color); 
 can->drawRectangle(((j-1)*block_size), 0, block_size, cwh, bg); 
 can->drawRectangle(((j-1)*block_size), (cwh-numbers[j-1]), block_size, 
numbers[j-1], color); 
 } else { 
 
can->drawRectangle(((number_normal_block_size*block_size)+(((j)-number_normal_bloc
k_size)*block_size_plus_one)), 0, block_size_plus_one, cwh, bg); 
 
can->drawRectangle(((number_normal_block_size*block_size)+(((j)-number_normal_bloc
k_size)*block_size_plus_one)), (cwh-numbers[j]), block_size_plus_one, numbers[j], color 
); 
 
can->drawRectangle(((number_normal_block_size*block_size)+(((j-1)-number_normal_bl
ock_size)*block_size_plus_one)), 0, block_size_plus_one, cwh, bg); 
 
can->drawRectangle(((number_normal_block_size*block_size)+(((j-1)-number_normal_bl
ock_size)*block_size_plus_one)), (cwh-numbers[j-1]), block_size_plus_one, numbers[j-1], 
color); 
 } 
 } 
 } 

} 
  } 
 
  if(playAudialization()) { 

voices.at(0).stop(); 
  } 
 
  //after sorting turn data white 
  if( showVisualization()) { 

for (int i = 0; i < data_elements; i++) { 
 if(i < number_normal_block_size) { 
 can->drawRectangle((i*block_size), (cwh-numbers[i]), block_size, numbers[i], 
sort_done_color); 
 } else { 



 
can->drawRectangle(((number_normal_block_size*block_size)+((i-number_normal_block
_size)*block_size_plus_one)), (cwh-numbers[i]), block_size_plus_one, numbers[i], 
sort_done_color); 
 } 

} 
 

can->wait(); 
  } 
 
  delete[] numbers; 
} 
 
void BubbleSorter::run() { 
  if (showVisualization()) { 

createCanvas("Bubble Sort"); 
canvas->setBackgroundColor(BLACK); 

  } 
 
  if (playAudialization()) { 

createMixer(); 
 

voices = std::vector<ThreadSynth>(1, ThreadSynth(mixer)); 
mixer->add(voices[0]); 
voices[0].setEnvelopeActive(false); 

  } 
 
  if (showVisualization() || playAudialization()) { 

BubbleSort(canvas, voices, getDataAmount()); 
  } else { 

std::cout << "neither -v or -a flags set" << std::endl; 
std::exit(0); 

  } 
} 
 
 
} 
 
 
/** 
 * InsertionSorter.h declares declares, overrides, and implements the algorithm 
 * necessary to implement a insertion sort audialization and visualization. It 
 * inherits from SortingAudialVisualizations.h 
 * 
 * Who: Nate Herder 
 * When: 02/27/2020 
 * Where: Calvin University 
 * 



 */ 
 
#pragma once 
 
#include "SortingAudialVisualization.h" 
 
namespace avlib { 
 
class InsertionSorter : public SortingAudialVisualization { 
 public: 
  InsertionSorter(int argc, char **argv, bool value = false); 
  void InsertionSort(Canvas *can, std::vector<ThreadSynth> &voices, int data_elements); 
  void run(); 
}; 
 
} 
 
 
/** 
 * InsertionSorter.cpp defines the methods and algorithm required to make the 
 * audial/visualizaiton for insertion sort 
 * 
 * Who: Nate Herder 
 * When: 02/27/2020 
 * Where: Calvin University 
 * 
 */ 
 
#include "InsertionSorter.h" 
 
namespace avlib { 
 
InsertionSorter::InsertionSorter(int argc, char** argv, bool value) : 
SortingAudialVisualization(argc, argv, value) { 
 
} 
 
 
void InsertionSorter::InsertionSort(Canvas* can, std::vector<ThreadSynth>& voices, int 
data_elements) { 
  int cwh = getCanvasHeight(); 
  ColorFloat color = RED; 
  ColorFloat bg = BLACK; 
  ColorFloat sort_done_color = WHITE; 
  
  int block_size = getBlockSize(); 
  int number_normal_block_size = getNumberNormalBlockSize(); 
  int block_size_plus_one = block_size + 1; 



  if (showVisualization()) { 
can->start(); 

  } 
 
  // Generate data 
  int* numbers = new int[data_elements]; 
  for (int i = 0; i < data_elements; i++) { 

numbers[i] = rand() % (getCanvasHeight()); 
  } 
 
  // draw the original random data 
  if (showVisualization()) { 

for (int i = 0; i < data_elements; i++) { 
 if( i < number_normal_block_size ) { 
 can->drawRectangle((i*block_size), (cwh-numbers[i]), block_size, numbers[i], 
color); 
 } else { 
 
can->drawRectangle(((number_normal_block_size*block_size)+(((i-number_normal_bloc
k_size)*block_size_plus_one)) ), (cwh-numbers[i]), block_size_plus_one, numbers[i], 
color); 
 } 

} 
  } 
 
  int insertValue; 
  int j; 
  int temp; 
  // begin sorting 
  for (int i = 1; i < data_elements; i++) { 

insertValue = numbers[i]; 
j = i; 
while (j > 0 && numbers[j - 1] > insertValue) { 

 
 if(showVisualization()) { 
 if(j < number_normal_block_size) { 
 can->drawRectangle( (j*block_size), 0, block_size, cwh, bg ); 
 can->drawRectangle( ((j-1)*block_size), 0, block_size, cwh, bg ); 
 } else { 
 can->drawRectangle( 
((j*number_normal_block_size)+((j-number_normal_block_size)*block_size_plus_one)), 
0, block_size_plus_one, cwh, bg); 
 can->drawRectangle( 
(((j-1)*number_normal_block_size)+((j-1)-number_normal_block_size)*block_size_plus_o
ne), 0, block_size_plus_one, cwh, bg); 
 } 
 } 
 



 if (playAudialization()) { 
 MidiNote note = Util::scaleToNote(numbers[j], std::make_pair(0, 
getCanvasHeight()), std::make_pair(C3, C7)); 
 voices.at(0).play(note, Timing::MILLISECOND, 30); 
 } 
 
 numbers[j] = numbers[j - 1]; 
 if (showVisualization()) { 
 can->sleep(); 
 if(j < number_normal_block_size) { 
 can->drawRectangle( (j*block_size), (cwh-numbers[j]), block_size, numbers[j], 
color ); 
 can->drawRectangle( ((j-1)*block_size), (cwh-insertValue), block_size, insertValue, 
color ); 
 } else { 
 can->drawRectangle( 
((j*number_normal_block_size)+((j-number_normal_block_size)*block_size_plus_one)), 
(cwh-numbers[j]), block_size_plus_one, numbers[j], color ); 
 can->drawRectangle( 
(((j-1)*number_normal_block_size)+((j-1)-number_normal_block_size)*block_size_plus_o
ne), (cwh-numbers[j-1]), block_size_plus_one, numbers[j-1], color ); 
 } 
 } 
 j--; 

} 
numbers[j] = insertValue; 

  } 
 
  //make sure that the ThreadSynth stops playing 
  if(playAudialization()) { 

voices.at(0).stop(); 
  } 
 
  // after sorting turn data white 
  if (showVisualization()) { 

for (int i = 0; i < data_elements; i++) { 
 if( i < number_normal_block_size ) { 
 can->drawRectangle((i*block_size), (cwh-numbers[i]), block_size, numbers[i], 
sort_done_color); 
 } else { 
 
can->drawRectangle(((number_normal_block_size*block_size)+(((i-number_normal_bloc
k_size)*block_size_plus_one)) ), (cwh-numbers[i]), block_size_plus_one, numbers[i], 
sort_done_color); 
 } 

} 
 

can->wait(); 



  } 
 
  delete[] numbers; 
} 
 
 
void InsertionSorter::run() { 
  if (showVisualization()) { 

createCanvas("Insertion Sort"); 
  } 
  if (playAudialization()) { 

createMixer(); 
  } 
 
  if (playAudialization()) { 

voices = std::vector<ThreadSynth>(1, ThreadSynth(mixer)); 
mixer->add(voices[0]); 
voices[0].setEnvelopeActive(false); 

  } 
 
  if (showVisualization()) { 

canvas->setBackgroundColor(BLACK); 
  } 
 
  if (showVisualization() || playAudialization()) { 

InsertionSort(canvas, voices, getDataAmount()); 
  } else { 

std::cout << "neither -v or -a flags set" << std::endl; 
std::exit(0); 

  } 
 
} 
 
 
} 
 
 
/** 
 * MergeSorter.h declares declares, overrides, and implements the algorithm 
 * necessary to implement a merge sort audialization and visualization. It 
 * inherits from SortingAudialVisualizations.h 
 * 
 * Who: Nate Herder 
 * When: 11/06/2019 
 * Where: Calvin University 
 * 
 */ 
 



#pragma once 
 
#include "SortingAudialVisualization.h" 
 
namespace avlib { 
 
class MergeSorter : public SortingAudialVisualization { 
 public: 
  MergeSorter(int argc, char **argv, bool value = false); 
  void MergeSort(Canvas *can, std::vector<ThreadSynth> &voices, int threads, int size); 
  void run(); 
}; 
 
} 
 
 
/** 
 * MergeSorter.cpp defines the methods and algorithm required to make the 
 * audial/visualizaiton for merge sort 
 * 
 * Who: Nate Herder 
 * When: 11/06/2019 
 * Where: Calvin University 
 * 
 */ 
 
#include "MergeSorter.h" 
 
namespace avlib { 
 
enum MergeState { 
  S_MERGE = 1, 
  S_SHIFT = 2, 
  S_WAIT = 3, 
  S_DONE = 4, 
  S_HIDE = 5 
}; 
 
struct sortData { 
  ColorFloat color;  // Color of the thread 
  MergeState state;  // Current state of the threads 
  int first, last,   // Start and end of our block 
 left, right,   // Indices of two numbers to compare 
 fi, hi, li, // Indices of first middle and last numbers in a set 
 depth; // Current depth of the merge 
  int* a; // Array of numbers to sort 
  int seg, segs; // Current / total segments 
  int size; 



 
  sortData(int* arr, int f, int l, ColorFloat c) { 

fi = hi = li = 0;  // Initialize indices 
left = right = 0;  // Initialize bounds 
color = c; // Set the color 
a = arr; // Get a pointer to the array we'll be sorting 
first = f; // Set the first element we need to worry about 
last = l; // Set the last element we need to worry about 
depth = 0; // We start at depth 0 
seg = 0; 
segs = 1;  // We start on segment -1, with a total of 1 segment 
while (segs < (l - f)) {  // If the current number of segments is more than 

 // the # of elements, we're done 
 ++depth; // Otherwise, increment the depth... 
 segs *= 2; //...and double the number of segments 

} 
state = S_SHIFT;  // Start Merging 
size = 2; 

  } 
 
  void restart(int l) { 

depth = 0; 
hi = last; 
right = hi + 1; 
last = li = l; 
fi = left = first; 
state = S_MERGE; 
size *= 2; 

  } 
 
  void sortStep() { 

int tmp, pivot, jump; 
switch (state) { 

 case S_SHIFT: 
 pivot = jump = segs / 2; 
 fi = first; 
 li = last; 
 hi = (fi + li) / 
 2;  // Set our half index to the median of our first and last 
 for (tmp = depth; tmp > 0; --tmp) { 
 jump /= 2; 
 if (seg < pivot) { 
 pivot -= jump; 
 li = hi;  // Set out last index to our old half index 
 } else { 
 pivot += jump; 
 fi = hi + 1;  // Set out first index to our old half index plus one 
 } 



 hi = (fi + li) / 
 2;  // Set our new half index to the median of our first and last 
 } 
 left = fi; 
 right = hi + 1; 
 state = S_MERGE;  // We're ready to start Merging 
 break; 
 case S_MERGE: 
 if (left > right || right > last) { 
 seg = 0; // Reset our segment(s) 
 segs /= 2;  // We're now using half as many segments 
 state = (depth-- == 0) ? S_WAIT : S_SHIFT; 
 } else if (right > li) { 
 ++seg; 
 state = S_SHIFT;  // Move on to the next segment and recalculate our 
 // first and last indices 
 } else if (left <= hi && a[left] < a[right]) { 
 ++left; 
 } else { 
 tmp = a[right]; 
 for (int x = right; x > left; --x) a[x] = a[x - 1]; 
 a[left] = tmp; 
 ++left; 
 ++right; 
 ++hi; 
 } 
 break; 
 default: 
 break; 

} 
  } 
}; 
 
MergeSorter::MergeSorter(int argc, char** argv, bool value) : 
SortingAudialVisualization(argc, argv, value) { 
 
} 
 
void MergeSorter::MergeSort(Canvas* can, std::vector<ThreadSynth>& voices, int 
threads, int size) { 
  if (showVisualization()) { 

can->start(); 
  } 
  const int IPF = 1; // Iterations per frame 
 
  // generate the data to sort 
  int* numbers = new int[size];  // Array to store the data 
  for (int i = 0; i < size; i++) { 



numbers[i] = rand() % (getCanvasHeight()); 
  } 
 
  int bs = size / threads; 
  int ex = size % threads; 
  sortData** sd = new sortData*[threads]; 
  int f = 0; 
  int l = (ex == 0) ? bs - 1 : bs; 
  for (int i = 0; i < threads; ++i) { 

sd[i] = new sortData(numbers, f, l, Colors::highContrastColor(i)); 
f = l + 1; 
if (i < ex - 1) { 

 l += (bs + 1); 
} else { 

 l += bs; 
} 

  } 
 
  // begin sorting 
  #pragma omp parallel num_threads(threads) 
  { 

int tid = omp_get_thread_num(); 
 

while (true) { 
 if (showVisualization()) { 
 can->sleep(); 
 } 
 if (sd[tid]->state == S_WAIT) {  // Merge waiting threads 
 if (playAudialization()) { 
 voices.at(tid).stop(); 
 } 
 if ((tid % sd[tid]->size) > 0) 
 sd[tid]->state = S_DONE; 
 else { 
 int next = tid + sd[tid]->size / 2; 
 if (next < threads && sd[next]->state == S_DONE) { 
 sd[next]->state = S_HIDE; 
 sd[tid]->restart(sd[next]->last); 
 } 
 } 
 } 
 for (int i = 0; i < IPF; i++) { 
 sd[tid]->sortStep(); 
 } 
 if (showVisualization()) { 
 can->pauseDrawing();  // Tell the Canvas to stop updating the screen temporarily 
 } 
 int start = sd[tid]->first, height; 



 int cwh = getCanvasHeight(); 
 ColorFloat color; 
 ColorFloat bg = BLACK; 
 if (sd[tid]->state != S_HIDE) { 
 // Draw a black rectangle over our portion of the screen to cover up the old 
drawing 
 if (showVisualization()) { 
 can->drawRectangle(start, 0, sd[tid]->last - sd[tid]->first, cwh, bg); 
 } 
 for (int i = sd[tid]->first; i < sd[tid]->last; ++i, ++start) { 
 height = numbers[i]; 
 if (i == sd[tid]->left) { 
 if(playAudialization()) { 
 MidiNote note = Util::scaleToNote(numbers[i], std::make_pair(0, 
getCanvasHeight()), std::make_pair(C3, C7)); 
 voices.at(tid).play(note, Timing::MICROSECOND, 50); 
 } 
 } 
 if (sd[tid]->state == S_WAIT || sd[tid]->state == S_DONE) 
 color = WHITE; 
 else { 
 if (i == sd[tid]->right || i == sd[tid]->left) 
 color = WHITE; 
 else if (i < sd[tid]->left) 
 color = sd[tid]->color; 
 else if (i >= sd[tid]->fi && i <= sd[tid]->li) 
 color = Colors::blend(sd[tid]->color, WHITE, 0.5f); 
 else 
 color = Colors::blend(sd[tid]->color, BLACK, 0.5f); 
 } 
 if (showVisualization()) { 
 can->drawLine(start, cwh - height, start, cwh, color); 
 } 
 } 
 } 
 if (showVisualization()) { 
 can->resumeDrawing();  // Tell the Canvas it can resume updating 
 } 

} 
 

if(playAudialization()) { 
 voices.at(tid).stop(); 

} 
  } 
} 
 
void MergeSorter::run() { 
  int num_threads = getNumThreads(); 



 
  if (showVisualization()) { 

createCanvas("Merge Sort"); 
canvas->setBackgroundColor(BLACK); 

  } 
  if (playAudialization()) { 

createMixer(); 
 

voices = std::vector<ThreadSynth>(num_threads, ThreadSynth(mixer)); 
for (unsigned i = 0; i < voices.size(); i++) { 

 mixer->add(voices[i]); 
 voices[i].setVolume(0.5); 
 voices[i].setEnvelopeActive(false); 

} 
  } 
 
  if (showVisualization() || playAudialization()) { 

MergeSort(canvas, voices, num_threads, getCanvasWidth()); 
  } else { 

std::cout << "neither -v or -a flags set" << std::endl; 
std::exit(0); 

  } 
} 
 
 
} 
 
 
/** 
 * SelectionSorter.h declares declares, overrides, and implements the algorithm 
 * necessary to implement a selection sort audialization and visualization. It 
 * inherits from SortingAudialVisualizations.h 
 * 
 * Who: Nate Herder 
 * When: 04/08/2020 
 * Where: Calvin University 
 * 
 */ 
 
#pragma once 
 
#include "SortingAudialVisualization.h" 
 
namespace avlib { 
 
class SelectionSorter : public SortingAudialVisualization { 
 public: 
  SelectionSorter(int argc, char **argv, bool value = false); 



  void run(); 
  void SelectionSort(Canvas *can, std::vector<ThreadSynth> &voices, int data_elements); 
}; 
 
} 
 
 
/** 
 * SelectionSorter.cpp defines the methods and algorithm required to make the 
 * audial/visualizaiton for selection sort 
 * 
 * Who: Nate Herder 
 * When: 02/27/2020 
 * Where: Calvin University 
 * 
 */ 
 
#include "SelectionSorter.h" 
 
namespace avlib { 
 
 
SelectionSorter::SelectionSorter(int argc, char **argv, bool value): 
SortingAudialVisualization(argc, argv, value) { 
 
} 
 
void SelectionSorter::SelectionSort(Canvas *can, std::vector<ThreadSynth> &voices, int 
data_elements) { 
  int cwh = getCanvasHeight();  // canvas window height 
  ColorFloat color = RED; 
  ColorFloat bg = BLACK; 
  ColorFloat sort_done_color = WHITE; 
 
  int block_size = getBlockSize(); 
  int number_normal_block_size = getNumberNormalBlockSize(); 
  int block_size_plus_one = block_size + 1; 
  if (showVisualization()) { 

can->start(); 
  } 
 
  // generate the data to sort 
  int *numbers = new int[data_elements];  // Array to store the data 
  for (int i = 0; i < data_elements; i++) { 

numbers[i] = rand() % getCanvasHeight(); 
  } 
 
  // draw the original random data 



  if (showVisualization()) { 
for (int i = 0; i < data_elements; i++) { 

 if( i < number_normal_block_size ) { 
 can->drawRectangle((i*block_size), (cwh-numbers[i]), block_size, numbers[i], 
color); 
 } else { 
 
can->drawRectangle(((number_normal_block_size*block_size)+(((i-number_normal_bloc
k_size)*block_size_plus_one)) ), (cwh-numbers[i]), block_size_plus_one, numbers[i], 
color); 
 } 

} 
  } 
 
  // begin sorting 
  int min; 
  int temp; 
  for (int i = 0; i < data_elements; i++) { 

min = i; 
for (int j = i; j < data_elements; j++) { 

 min = numbers[j] < numbers[min] ? j : min; 
} 

  
if(showVisualization()) { 

 can->sleep();  // recommended to sleep before drawing 
 if(min < number_normal_block_size) { //this isnt going to work well work well for 
odd data elemtns that don't divide evenly 
 can->drawRectangle( (i*block_size), 0, block_size, cwh, bg ); 
 can->drawRectangle( (min*block_size), 0, block_size, cwh, bg  ); 
 } 

} 
 

temp = numbers[i]; 
numbers[i] = numbers[min]; 
numbers[min] = temp; 

 
if (playAudialization()) { 

 MidiNote note = Util::scaleToNote(numbers[min], std::make_pair(0, 
getCanvasHeight()), std::make_pair(C3, C7)); 
 voices.at(0).play(note, Timing::MICROSECOND, 30); 

} 
 

if (showVisualization()) { 
 if(min < number_normal_block_size) { 
 can->drawRectangle((i*block_size), (cwh-numbers[i]), block_size, numbers[i], 
color); 
 can->drawRectangle((min*block_size), (cwh-numbers[min]), block_size, 
numbers[min], color); 



 } 
} 

 
  } 
 
  if(playAudialization()) { 

voices.at(0).stop(); 
  } 
 
  //after sorting turn data white 
  if( showVisualization()) { 

for (int i = 0; i < data_elements; i++) { 
 if(i < number_normal_block_size) { 
 can->drawRectangle((i*block_size), (cwh-numbers[i]), block_size, numbers[i], 
sort_done_color); 
 } 

} 
  

can->wait(); 
  } 
 
  delete[] numbers; 
 
} 
 
void SelectionSorter::run() { 
 
  if (showVisualization()) { 

createCanvas("Selection Sort"); 
canvas->setBackgroundColor(BLACK); 

  } 
 
  if (playAudialization()) { 

createMixer(); 
 

voices = std::vector<ThreadSynth>(1, ThreadSynth(mixer)); 
mixer->add(voices[0]); 
voices[0].setEnvelopeActive(false); 

  } 
 
  if (showVisualization() || playAudialization()) { 

SelectionSort(canvas, voices, getDataAmount()); 
  } else { 

std::cout << "neither -v or -a flags set" << std::endl; 
std::exit(0); 

  } 
 
} 



 
 
} 
 
 
/** 
 * ShakerSorter.h declares declares, overrides, and implements the algorithm 
 * necessary to implement a shaker sort audialization and visualization. It 
 * inherits from SortingAudialVisualizations.h 
 * 
 * Who: Nate Herder 
 * When: 04/08/2020 
 * Where: Calvin University 
 * 
 */ 
 
#pragma once 
 
#include "SortingAudialVisualization.h" 
 
namespace avlib { 
 
class ShakerSorter : public SortingAudialVisualization { 
 public: 
  ShakerSorter(int argc, char **argv, bool value = false); 
  void run(); 
  void ShakerSort(Canvas *can, std::vector<ThreadSynth> &voices, int data_elements); 
}; 
 
} 
 
 
/** 
 * SortingAudialVisualizations.cpp holds defines the common methods and data 
 * across all sorting algorithms. 
 * 
 * Who: Nate Herder 
 * When: 11/06/2019 
 * Where: Calvin University 
 * 
 */ 
 
#include "SortingAudialVisualization.h" 
#include "BubbleSorter.h" 
#include "InsertionSorter.h" 
#include "MergeSorter.h" 
#include "SelectionSorter.h" 
#include "ShakerSorter.h" 



#include <cmath> 
 
namespace avlib { 
 
SortingAudialVisualization::SortingAudialVisualization(int argc, char** argv, bool value) : 
AudialVisualization(argc, argv), main_thread{value} { 
  if( (getCanvasWidth() % getDataAmount()) == 0 ) { 

setEvenDataChunks(true); 
setBlockSize( (getCanvasWidth()/getDataAmount()) ); 
setNumberNormalBlockSize( getDataAmount() ); 

  } else { 
setEvenDataChunks(false); 
setBlockSize( floor( (getCanvasWidth()/getDataAmount()) ) ); 
setNumberNormalBlockSize( (getDataAmount() - (getCanvasWidth() % 

getDataAmount())) ); 
  } 
 
  std::vector<std::string> sort_run_vector = getSortingAlgorithms(); 
 
  if( getMainThread() == true ) { 

#pragma omp parallel num_threads( sort_run_vector.size() ) 
{ 

 int tid = omp_get_thread_num(); 
   
 if(sort_run_vector.at(tid) == "bubble") { 
 BubbleSorter b(argc, argv); 
 b.run(); 
 } else if(sort_run_vector.at(tid) == "insertion") { 
 InsertionSorter i(argc, argv); 
 i.run(); 
 } else if(sort_run_vector.at(tid) == "merge") { 
 MergeSorter m(argc, argv); 
 m.run(); 
 } else if(sort_run_vector.at(tid) == "selection") { 
 SelectionSorter s(argc, argv); 
 s.run(); 
 } else if(sort_run_vector.at(tid) == "shaker") { 
 ShakerSorter sh(argc, argv); 
 sh.run(); 
 } 

} 
  } 
 
 
} 
 
Canvas* SortingAudialVisualization::createCanvas(std::string canvas_name) { 
  setCanvasWidth(getCanvasWidth() ); 



  setCanvasHeight((getCanvasWidth() / 2)); 
  canvas = new Canvas(0, 0, getCanvasWidth(), (getCanvasWidth() / 2), canvas_name); 
  return canvas; 
} 
 
Mixer* SortingAudialVisualization::createMixer() { 
  mixer = new Mixer(); 
  return mixer; 
} 
 
void SortingAudialVisualization::setEvenDataChunks(const int v) { 
  even_data_chunks = v; 
} 
 
bool SortingAudialVisualization::getEvenDataChunks() const { 
  return even_data_chunks; 
} 
 
void SortingAudialVisualization::setBlockSize(const int bs) { 
  block_size = bs; 
} 
 
int SortingAudialVisualization::getBlockSize() const { 
  return block_size; 
} 
 
void SortingAudialVisualization::setNumberNormalBlockSize(const int n) { 
  number_normal_block_size = n; 
} 
 
int SortingAudialVisualization::getNumberNormalBlockSize() const { 
  return number_normal_block_size; 
} 
 
bool SortingAudialVisualization::getMainThread() { 
  return main_thread; 
} 
 
 
SortingAudialVisualization::~SortingAudialVisualization() { 
  delete canvas; 
  delete mixer; 
} 
 
} 
 
 
/** 



 * linearSearch.h declares declares, overrides, and implements the algorithm 
 * necessary to implement a linear search audialization and visualization. It 
 * inherits from AudialVisualization.h 
 * 
 * Who: Nate Herder 
 * When: 04/23/2020 
 * Where: Calvin University 
 * 
 */ 
 
#pragma once 
 
#include "AudialVisualization.h" 
 
namespace avlib { 
 
  class LinearSearch : public AudialVisualization { 
  public: 

LinearSearch(int argc, char **argv); 
void makeSearch(Canvas *can, std::vector<ThreadSynth> &voices, int 

data_elements, int search); 
void run(); 

  }; 
 
} 
 
 
/** 
 * LinearSearch.cpp defines the methods and algorithm required to make the 
 * audial/visualizaiton for a linear search 
 * 
 * Who: Nate Herder 
 * When: 04/23/2020 
 * Where: Calvin University 
 * 
 */ 
 
#include "LinearSearch.h" 
#include <cmath> 
 
namespace avlib { 
 
  LinearSearch::LinearSearch(int argc, char **argv) : AudialVisualization(argc, argv) { 
 
  } 
 
  void LinearSearch::makeSearch(Canvas *can, std::vector<ThreadSynth> &voices, int 
data_elements, int search) { 



int cwh = getCanvasHeight();  // canvas window height 
ColorFloat color = RED; 
ColorFloat bg = BLACK; 
ColorFloat sort_done_color = WHITE; 
if (showVisualization()) { 

 can->start(); 
} 

 
int block_size; 
int number_normal_block_size; 
if( (getCanvasWidth() % getDataAmount()) == 0 ) { 

 block_size = (getCanvasWidth()/getDataAmount()); 
 number_normal_block_size = getDataAmount(); 

} else { 
 block_size = floor( (getCanvasWidth()/getDataAmount()) ); 
 number_normal_block_size = (getDataAmount() - (getCanvasWidth() % 
getDataAmount())); 

} 
int block_size_plus_one = block_size + 1; 

 
// generate the data to sort 
int *numbers = new int[data_elements];  // Array to store the data 
for (int i = 0; i < data_elements; i++) { 

 numbers[i] = rand() % getCanvasHeight(); 
} 

 
if(showVisualization()) { 

 std::string display_text = "Searching for: " + std::to_string(search); 
 can->drawText( display_text, 10, 20, 20, color ); 

} 
 

// draw the original random data 
if (showVisualization()) { 

 for (int i = 0; i < data_elements; i++) { 
 if( i < number_normal_block_size ) { 
 can->drawRectangle((i*block_size), (cwh-numbers[i]), block_size, numbers[i], 
color); 
 } else { 
 
can->drawRectangle(((number_normal_block_size*block_size)+(((i-number_normal_bloc
k_size)*block_size_plus_one)) ), (cwh-numbers[i]), block_size_plus_one, numbers[i], 
color); 
 } 
   
 } 

} 
 

int result_location = NULL; 



bool search_found = false; 
//begin searching 
for(int i = 0; i < data_elements; i++) { 

 if(numbers[i] == search) { 
 result_location = i; 
 search_found = true; 
 break; 
 
 }else { 
 
 if (playAudialization()) { 
 MidiNote note = Util::scaleToNote(numbers[i], std::make_pair(0, 
getCanvasHeight()), std::make_pair(C3, C7)); 
 voices.at(0).play(note, Timing::MICROSECOND, 50); 
 } 
 
 if(showVisualization()) { 
 can->sleep(); 
 if( i < number_normal_block_size ) { 
 can->drawRectangle( i*block_size, (cwh-numbers[i]), block_size, numbers[i], 
sort_done_color ); 
 } else { 
 can->drawRectangle( 
((number_normal_block_size*block_size)+(((i-number_normal_block_size)*block_size_pl
us_one)) ), (cwh-numbers[i]), block_size_plus_one, numbers[i], sort_done_color ); 
 } 
 } 
   
 } 

} 
if(search_found) { 

 std::string display_text = "Found at index: " + std::to_string(result_location); 
 can->drawText( display_text, 10, 45, 20, color ); 

} else { 
 std::string display_text = "No matches found"; 
 can->drawText( display_text, 10, 45, 20, color ); 

} 
  
 

if(playAudialization()) { 
 voices.at(0).stop(); 

} 
 

if(showVisualization()) { 
 can->wait(); 

} 
 

delete[] numbers; 



  } 
 
  void LinearSearch::run() { 
 

if (showVisualization()) { 
 createCanvas("Linear Search"); 
 canvas->setBackgroundColor(BLACK); 

} 
 

if (playAudialization()) { 
 createMixer(); 
 
 voices = std::vector<ThreadSynth>(1, ThreadSynth(mixer)); 
 mixer->add(voices[0]); 
 voices[0].setEnvelopeActive(false); 

} 
 

int search = rand() % getCanvasHeight(); 
 

if (showVisualization() || playAudialization()) { 
 std::cout << "Searching for: " << search << std::endl; 
 makeSearch(canvas, voices, getDataAmount(), search); 

} else { 
 std::cout << "neither -v or -a flags set" << std::endl; 
 std::exit(0); 

} 
 
  } 
 
} 
 
 
/** 
 * main.cpp is the driver 
 * 
 * Who: Nate Herder 
 * When: 11/06/2019 
 * Where: Calvin University 
 * 
 */ 
 
#include "SortingAudialVisualization.h" 
#include "LinearSearch.h" 
 
using namespace avlib; 
 
int main(int argc, char **argv) { 
 



  SortingAudialVisualization av(argc, argv); 
 
  // LinearSearch ls(argc, argv); 
  // ls.run(); 
 
  return 0; 
} 
 
 
#Target to make and objects needed 
TARGET = main 
OBJS = $(TARGET).o MergeSorter.o BubbleSorter.o InsertionSorter.o 
SortingAudialVisualization.o AudialVisualization.o SelectionSorter.o ShakerSorter.o 
LinearSearch.o 
 
#Compiler, remove command, and OS we're working on 
CC = g++ 
RM = rm -f 
UNAME := $(shell uname) 
 
#Check if we're on a Mac or a Linux machine 
 
#Linux 
ifeq ($(UNAME), Linux) 
    OS_LFLAGS := 
    OS_INCLUDE := 
    OS_LDIRS := -L/usr/lib -L/usr/local/lib 
    OS_EXTRA_LIB := 
    OS_GLFW := glfw 
    OS_GL := -lGL 
endif 
 
#Mac 
ifeq ($(UNAME), Darwin) 
    OS_LFLAGS := -framework Cocoa -framework OpenGl -framework IOKit -framework 
Corevideo 
    OS_INCLUDE := 
    OS_LDIRS := 
    OS_EXTRA_LIB := 
    OS_GLFW := glfw3 
    OS_GL := 
    OS_EXTRA_LINK := 
endif 
 
#Compiler flags 
CXXFLAGS=-c -O3 -g3 \ 

-Wall -Wextra -pedantic-errors \ 
-I/usr/include/ \ 



-I/usr/include/TSGL/ \ 
${OS_INCLUDE} \ 
-I/usr/include/freetype2/ \ 
-I/usr/include/freetype2/freetype  \ 
-I/usr/local/include/tsal/ \ 
-std=c++11 -fopenmp \ 
-Wno-unused-function #Supress warnings 

 
#Linking flags 
LFLAGS=-o $(TARGET) \ 

${OS_EXTRA_LIB} \ 
    ${OS_LDIRS} \ 

${OS_EXTRA_LINK} \ 
-ltsgl -lfreetype \ 
-lGLEW -l${OS_GLFW} \ 
-lportaudio \ 
-ltsal \ 
-lX11 ${OS_GL} -lXrandr \ 

    -L/usr/lib \ 
    -L/usr/local/lib \ 

-fopenmp \ 
${OS_LFLAGS} 

 
.SUFFIXES: .cpp .o 
 
#all command 
all: $(TARGET) 
 
#Linking 
$(TARGET): $(OBJS) 
    @echo "\nLinking $(TARGET)..." 
    $(CC) $(OBJS) $(LFLAGS) 
    @echo 
  
#Compiling 
.cpp.o: 
    @echo "\nCompiling $<..." 
    $(CC) $(CXXFLAGS) $< 
 
#Clean command 
clean: 
    $(RM) $(TARGET) $(OBJS) *~ 


